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Abstract

The flow pattern through a cloud of polymer segments is obviously different from the flow pattern around a solid object. It can be shown
theoretically, however, that the partial viscosity due to the cloud can take the same value as for a solid sphere with the radius of gyration of the
cloud as its radius. The specific viscosity of polymer solution has been derived as 2.5(c/cy), with ¢ being the internal concentration associated
with a polymer molecule. The internal concentration is the ratio of mass over the volume of gyration of segments in a polymer chain. A radius
of gyration exists for any type of polymers, flexible or rigid, exhibiting different kinds of dependence on the molecular weight. From the
expression of the specific viscosity, the intrinsic viscosity is shown to be equal to 2.5/c", ¢* being the (minimum) internal concentration for
the state of maximum conformational entropy. The equation for the specific viscosity, thus obtained, is expanded into a polynomial in c[7].
This formula is shown to agree with data for several kinds of polymers, with flexible, semi-rigid and rigid.

The quantity 1/c; can be interpreted as an expression for the chain stiffness. In polyelectrolytes, coulombic repulsive potentials affect the
chain stiffness. The dependence of c¢; on the effective population of polyions in the polyelectrolyte molecule is discussed.

An equation of state for the polymer solution is formulated that included the internal concentration. The virial coefficients emerge as a
result of ¢; not always being equal to c¢”, and they are molecular weight dependent. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Stokes—Einstein equation [1-3] is a description of
how viscosity increases due to the presence of solid particles
in a fluid. The specific viscosity 7, is described in terms of
the number, n, and volume, v, of the solid spheres suspended
in unit volume of fluid with viscosity of 7, i.e.
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The coefficient 2.5 has its origin in that the surface integral
of the shear stress at the wall of the solid sphere is four times
as great as the pressure drop across that sphere, and that the
contribution to the overall viscosity from the pressure being
equal to my/2. The value of 2.5 has been demonstrated
experimentally by Eirich [4] with spherical beads suspended
in liquid. Eq. (1) can be used as an empirical formula for
particles that are not spherical, as long as they are randomly
oriented, with v as an effective hydrodynamic volume
resulting in the observed specific viscosity. A flow-induced
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change in the orientation of the non-spherical particles
would lead to a non-Newtonian viscosity, in which case a
flow rate term would need to be included.

Flory and Fox [5] has shown that the specific viscosity for
polymer solution in the dilute limit to be proportional to the
cube of the RMS end-to-end distance, {(r*)"", of the chain
conformation, i.e.

<r2>3/2
M
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where M is the molecular weight of polymer.

Since ¢cN4/M is the number of molecules per unit volume
of solution, N, being Avogadro’s number, Eq. (2) can be
interpreted to mean the polymer molecule is hydrodynami-
cally equivalent to the solid sphere of the diameter ()",
The Flory—Fox equation is further supported by the Mark—
Houwink—Sakurada equation as applied to different
solvents

[1] = KyusM* 3)

that the polymer molecule swells in a good solvent, so that
the parameter v for M” o (r*)!"? is greater than 1/2, and a
becomes greater than 0.5. The term hydrodynamic volume

0032-3861/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.

PII: S0032-3861(02)00157-X



3448 S. Matsuoka, M.K. Cowman / Polymer 43 (2002) 3447—-3453

has originated from the tacit assumption of Eq. (1) being
applicable to the equivalent volume of a real polymer
treated as if it were a solid sphere.

Empirical fit of these formulas not-withstanding a
wriggling polymer molecules hardly resembles a solid
sphere, hydrodynamically or otherwise. The equilibrium
concentration for the unperturbed conformation is too low
to behave as solid, e.g. it can be shown to be in the order of
1% for a chain with 10,000 beads. As the boundary layer
thickness around each segment in the chain is in the order of
the segment [8], it can be shown that the fluid can flow with
through the cloud of such segments. The streamlines
through the cloud of chain segments are quite different
from the streamlines that flow around a solid sphere.
However, from the theory of Kirkwood and Riseman [9],
the specific viscosity due to the radial distribution of poly-
mer segments in suspension can be calculated, and the
intrinsic viscosity for the flexible chain is essentially the
Flory—Fox equation shown earlier.

It will be shown by our analysis that the flow around a
solid sphere with the radius that is equal to the RMS radius
of gyration for any type distribution of segments in a chain
(or arod) will exhibit the same value of specific viscosity as
for the flow through the cloud of the polymer chain in
solution. Thus the volume with the radius of gyration can
be treated as the empirical hydrodynamic volume for the
specific viscosity.

The concept of hydrodynamic volume could be extended
beyond the ideal dilute solution [6] to the concentration-
dependent specific viscosity. The Huggins [7] equation is
a first order modification of the term c[7], and a polynomial
expansion in c[7n] had been proposed to account for higher
order effects of concentration.

The Einstein—Stokes equation for the specific viscosity is
not a constitutive equation. If the intrinsic viscosity were a
measure of the energy loss in the fluid that goes around a
solid ball of polymer molecule, then it would have nothing
to do with the frictional dissipation of motion as polymer
molecules snake through the solution. If, on the other hand,
the intrinsic viscosity is in fact a measure of the frictional
loss in fluid that flows through the cloud of segments, then
the intrinsic viscosity has much to do with viscometric beha-
vior. The structural parameters related to theory of worm-
like motion proposed by Kratky and Porod [12], theory on
the characteristics of molecular structure as related to the
viscosity by Yamakawa [13,14], and theories introduced
with in-depth review by Fujita [15], all are related to the
structure that can be analyzed from the intrinsic viscosity.
Theories utilizing the worm or tube concept [16,17] are
embedded in the context of an environment surrounded by
neighboring polymer molecules, and the radius of gyration
of parts of a chain is utilized to characterize it. The coordi-
nated movements of parts of a chain and among chains as
theorized by Rouse [10] and Bueche [11] theories are
indirectly related because the molecular interpretation of
viscoelasticity utilizes the same molecular parameters.

2. Theory

We place a wriggling polymer chain in a parallel uniform
flow field, flowing in the x-direction. At a far away distance
from the center of the cloud in the y-direction, the velocity
gradient dV/dy is zero. Moving closer to the cloud’s center,
the velocity decreases as the fluid is met by more densely
populated segments. The dependence of dV/dy on y (or r)
direction inside the cloud of segments can be formulated by
considering the concentric shells, each containing one bead,
such that the specific viscosity increases by 2.5 (4Trrj2)Arj
for the jth layer of thickness Ar;, with the jth bead to be
counted from the center. The distance r; denotes the distance
from the center of the cloud to the jth bead. By summing
4Trrj2Arj from j =1 through N (N is the total number of
beads in the chain) and averaging them for all existing
individual polymer molecules with different conformations,
will obtain the volume of gyration

47
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J

which is multiplied by 2.5 to obtain 7, Compared to this, a
solid sphere with radius R in its place will obtain 7, of 2.5 X
4mR*/3. Thus the concluding statement can be made that “A
cloud with the radius of gyration of (s*)"* will render the
same specific viscosity as the solid sphere with radius R that
is equal to the (sH)" of that cloud”. The average internal
concentration ¢; can be defined by the equation: ¢; =
(MIN)/(47(s*)*”13), where M is the molecular weight of
the polymer for the cloud.

Since there are N,c/M number of clouds per unit volume
of solution, each with the effective volume of 4m(s>)*?, the
specific viscosity is obtained:

47 c
Ny = 2.5NA?<s2>3’2M 4)

3. The intrinsic viscosity

The intrinsic viscosity is defined as the dilution limit of
the specific viscosity over c. This is the state of ideal dilute
solution, in which the conformational probability is at its
maximum, unperturbed by the presence of neighbor
molecules, and the cloud’s volume is also at its maximum.
From the specific viscosity of Eq. (4), the intrinsic viscosity
[n] is obtained

o M 4m (s
[} =i = = 23Na 37—
which is readily identified with the Flory—Fox equation,
Eq. (2), if a (s>)** is proportional to (+*)"?, which is true
for flexible chain (s*)"* = (+*)!*/3/6. The experimentally
obtained Flory constant, @ in Eq. (2), has been quoted [5]
as 2.1 X 10% for several flexible chain polymers. If this
value is assumed, then (s>)"* in Eq. (5) should be about

&)



S. Matsuoka, M.K. Cowman / Polymer 43 (2002) 3447-3453 3449

one-third of (+*)2, which is close to the value of {(+*)"*/ /6.
Derivation of Eq. (5) did not assume any restrictions on the
types of polymer chain, such as flexible or stiff chains. In
fact, all these variables, including excluded volume effects
and non-theta solvents effects, are included in the value of
<52>1/2. The Flory constant, on the other hand, would not be
constant for different polymers that have a different relation-
ships between (+*)""? and (s*)'?, e.g. a rigid or semi-rigid
straight chain, or some non-uniform effects of excluded
volume. But the proportionality constant of Eq. (5) for
<s2) should remain constant, as it should be independent of
the structure.

For flexible chain polymers, the radius of gyration (s
is proportional to M"? in the theta condition, but in good
solvent the cloud volume expands, so (s*)"> ~ M'"?a with
a being the expansion factor. The expansion « is molecular
weight dependent, so (s*)"> ~ M" in general. The Mark—
Houwink—Sakurada equation, Eq. (3), follows directly from
Eq. (5), with the value of a in the MHS equation to be equal
to 3v — 1. In a good solvent, the cloud swells because more
solvent molecules are taken inside the cloud. Values of a
and Kyys for the M—H-S equation can be found for various
polymers in Polymer Handbook [18].

Patel and Takahashi [19] have obtained the values of
Kwms and a for cis-polyisoprene in hydrocarbon solvent as
1.94x 1072 and 0.70, respectively, in the molecular weight
range higher than 4 X 10°. For molecular weight below 10°,
however, the value of a was reported to be 1.2. Polyelec-
trolyte solutions with abundance of added salt ions are
known to behave as usual polymers with no polyions,
such as the viscosity being proportional to ~M for low
molecular weight but to ~M’-M"* for high molecular
weight [20]. The salt ions act as shielding the polyions,
which would render the polyelectrolytes the behavior so
different from ordinary polymers. Hyaluronan is no excep-
tion [21,22] when with salt concentration of greater than
0.1 M NaCl. Experimental data of our own on the salt-
shielded hyaluronan [23,24] revealed that there are also
two kinds of molecular weight dependence for the intrinsic
viscosity, each with its own set of Kyys and a. In the high
molecular weight range, Kyys of 2.9 X 1072 and a of 0.80
were observed, whereas in the low molecular weight range,
Kyns of 6.54 X 10~* and a of 1.16 were observed. The value
of 0.8 for the power a for the MHS equation for the high
molecular weight is observed frequently, which is easily
understood for chains of random conformations in good
solvents. The value of 1.16, found in the low molecular
weight range, however, would imply a different molecular
weight dependence for the radius of gyration. The two sets
of similar values for a have also been reported for the
hyaluronan in salt solution [25-32] for large molecular
weight.

The stiffness of a chain is determined by, among other
things, the difference in free energy between the straight and
flexed conformations, e.g. the trans and gauche conforma-
tions. For a chain of given stiffness, if the molecular length

2>1/2

is very short, the ratio of the arc to the chord is closer to
unity so the chain is nearly straight. For a straight chain, the
end-to-end distance is proportional to the molecular weight,
as against M"? or M" for the longer molecule of the same
kind of polymer. A straight chain can rotate around an axis
through the center at various angles of inclination. Such a
rotating rod can result in a cloud of very different kind. The
mean square radius of a stiff rod, consisting of N segments
each with length £, is (%) = N>£%/12. The lateral thickness
of the rod is designated as 6. So the characteristic volume is
obtained by integrating éw{N 2€%/12}sin”0 d@ for all angles
of inclination, 6, which obtains STN2L% 124, Thus, the
intrinsic viscosity in Eq. (5) would depend on N°IM, ie. it
would be proportional to M (or slightly higher in good
solvent with a of 1.2). These two extreme regimes of
molecular weight dependence for the intrinsic viscosity
have been recognized by Peterlin [33], and also by Kuhn
and Kuhn [34], who introduced the equation
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to cover the both regimes of molecular weight. It is seen in
this equation that, for small N, [n] is proportional to the
molecular weight, while with high molecular weight it is
proportional to N'2. This behavior at low values of N is
consistent with the original discovery by Staudinger [35]
of the proportionality between viscosity and molecular
weight in a series of (low molecular weight) paraffins. The
relative values of constants A and B in Eq. (6) determine the
critical molecular weight that separates the two ranges of
behavior. The ratio A/B is therefore a measure of stiffness.
The critical molecular weight, thus found, of 3.75 X 10* for
the hyaluronan, and 4 X 10° for the polyisoprene, can be
shown to represent the molecular length at which the
contour length is equal to about w{(r*)"?, obtained by assum-
ing the Flory parameter of 2.1 X 107,

4. Chain stiffness

Like many jargons, the word ‘stiffness’ could mean a
different thing depending on the context. In the present
context, it is that of an entropic spring. As such, the stiffness
could mean the tendency to be straight, or could be trans-
lated to m(s*>)"">/N£ where N£ is the contour length of the
chain. This is not the mechanically defined resistance to a
bending stress, which typically arises from raising the inter-
molecular potential energy, rather than lowering the
entropy, in deforming the body.

We have pointed out that, in the dilution limit, the volume
of gyration of a polymer, with given molecular weight,
would be at maximum, and that the internal concentration
¢ is at minimum, as this state of dilution represents the
unperturbed (by neighbors) conformations. If the volume
of gyration is expanded, e.g. in a good solvent, then c;
would decrease further. The expansion, in general, is a result
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of the more intense interaction between solute and solvent
molecules, as in the above case, or of the tendency for the
solute segments to avoid the like segments more than they
would the solvent molecules. An example for the latter
would be found in polyelectrolytes in the absence of
added salt that would shield the polyions from acting on
each other.

Polyelectrolytes are polymers with ionic groups. Those
polyions will exert mutual coulombic repulsion potential.
So the polyelectrolytes have the tendency to swell with
more polyions in the solution. We let the radius of gyration
to expand from (s*Y'? without polyions to (sg)”2 with
unshielded polyions. For a given polymer, the polyions
are placed at regular intervals along a molecule. The
population of the polyions in a cloud would be proportional
to ¢; without polyions, or inversely proportional to (572
The presence of polyions will expand the radius of gyration
from (s*)'* to (sﬁ)“ 2, but the polyion population itself is
proportional to (s*)'"?, so (s]2)>3/2 is proportional to the square
of (s*)*?, which is ~M?, and the proportionality of the
intrinsic viscosity to M? is predicted as (sf,>3/2/M ~ M’IM.
The value of 2 for the Mark—Houwink—Sakurada’s power a
has been observed in many polyelectrolytes in solutions
without added salt [18].

5. At higher concentration

When the concentration is increased, the conformational
probability would become more restricted, and c; increases.
(The conformational probability in the broad sense should
include the probability for the location of the center of mass
of the chain that keeps traveling in the solution, as it is for
the non-polymeric molecules in the gaseous state). So the
decrease in entropy begins from zero concentration.

By substituting ¢; into Eq. (4), the specific viscosity is
written in terms of ¢/c;, which is the volume fraction of the
clouds in solution:

Nep = 2.5i @)
1

This equation is general for all concentrations, as (A" is

concentration-dependent. The internal concentration is at

minimum for ¢ — 0, which corresponds to the unperturbed

(maximum) conformational probability, and is defined as

= C1.min» SO the intrinsic viscosity is obtained

[n] = 2.5/c" ®)

and Eq. (7) can be written in terms of [7],

*

g = clnl— )
1

To evaluate the specific viscosity from Eq. (7) or (9), ¢; will
have to be evaluated in terms of ¢. To do this, the concen-
tration dependence of conformational entropy would have
to be evaluated. The exact evaluation is a difficult task; c;
remains nearly constant at ¢ until ¢ exceeds c”, then

increases with ¢ towards higher concentration. We will
instead introduce an approximate expression for Eq. (7) in
terms of c[n] that is an experimentally obtainable value.
Taking derivative of c/c; with respect to c¢ obtains,
d(c/cplde = 1/ey — (c/clz)d(c/cl)/dc. Ignoring the second
term as insignificant (this is essentially assuming a constant
coefficient for c¢/c; in ¢, similar to the constant values for the
constant compressibility) then, [d(c/c;)/dc]Ac = Ac/c;. For
Ac from 0 to ¢, d(Inc/cp)de = 1. Setting Ky = 0.4, arrived at
from the value of 2.5 originating in Eq. (1), and with bound-
ary condition that ¢ — 0, ¢; = c”, it is obtained

c% = Kunyp =~ Kuclnlexp(Kuc[n)) 10

which is expanded, and obtains
1 2 1 3
Ny = c[mly1 + Kyclnl + 5(1(}10[71]) + ;(KHC[”O])

1 .1 s
+ E(KHC[”’)]) + a(KHC[n]) +} (11)

Eq. (11) is Martin’s equation, and it is known to deviate
from the experimental data at high c[n] values [40].

For example, Eq. (11) is compared with data obtained by
Berriaud, Milas, and Rinaudo [39] expressed with an
empirical expression

My = clml + 0.42(cin))” + 777X 107 (elm)*™®  (12)

demonstrating the departure for Eq. (11) from the data at
c[n] above 10.

Each term in Eq. (11) can be interpreted as resulting from
overlap of the associated volumes for one, two, three, etc.
molecules. When the concentration is very low, the lack of
opportunity for a molecule to touch another would limit the
overlap to between two molecules. This would correspond
to taking only the first two terms in the bracket in Eq. (11),
and we obtain the Huggins equation, with Ky clearly the
Huggins constant, and it is 0.4 as a consequence of 1/2.5
from the Einstein—Stokes constant in Eq. (1). Experimental
values for Ky have been reported, ranging between 0.3 and
0.5, in the compilation for many kinds of polymers by Stickler
and Sutherlin in Polymer Handbook [18]. The values for
hyaluronan, obtained by Shimada [27], were reported
typically from 0.35 to 0.40 in the high molecular weight
range. For polyisoprene in a hydrocarbon solvent, the
value of 0.42 was reported [19].

The infinite number of terms in Eq. (11) assumes
possibilities for overlap up to among all molecules in the
solution, clearly an overestimation of the neighbor contacts.
If we choose a more realistic number of four for the
neighbors in touch, as a tetrahedral packing of spheri-
cally symmetrical bodies, then we would obtain a
polynomial with first four terms of Eq. (11), as
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Fig. 1. Comparison of Eq. (11) (—) Eq. (13) (—) and data (O) [39] for
hyaluronan in the 0.5 M NaCl solution.

described by Eq. (13) below (Fig. 1):

1 1
Ny = c[n]{l + Kyc[n] + j(KHC[TI])z + y(KHC[TI]f}
(13)

This equation, again with the value of 0.4 for Ky, fits
well not only for the data shown above, but for data for
various kinds of polymers. This is shown in Fig. 2 in
which, in addition to Berriaud et al.’s data on hyalur-
onan, the data on polyisoprene in hydrocarbon solvent
obtained by Patel and Takahashi, the data on polystyr-
ene, polyisoprene, polybutadiene by Raspaud et al. [41],
the data on semi-rigid polyhexyl isocyanates by
Ohshima et al. [42], and the data on straight and rigid
polyphenylenes by Kwei et al. [43] have been compared
with Eq. (13). The fit with is excellent with all these
polymers. In all these data, we fitted Eq. (13) directly to
raw data, through trial and error with the values of
Kyl[m] for the best fit, rather than going through the
often practiced procedure of first determining the values
for Ky and [n] by drawing the straight lines for Huggins
and Kraemer equations against ¢ for a low concentration
range. In other words, in our procedure, we treated

N W A oo N
S

log sp viscosity

_1MA’A/KE

-1 0 1 2

log cl[eta]

Fig. 2. Comparison of Eq. (13) (—) with experimental data for rigid ( X),
semi-rigid (M), and flexible (A), polymers.

Kyl[n] to be a single variable, with Ky = 0.4, and
curve-fitted the data directly with Eq. (13) against
c[n]. Raspaud et al. [41] had concluded by their proce-
dure of analysis that the specific viscosity could not be
a function of c¢[7] only; their analysis led to the n, vs.
c[n] plots to diverge for different molecular weight,
while our analysis of their raw data has led to a good
fit with Eq. (13) for all molecular weight values. We
experienced, on different occasions, that a systematic
error could be generated in Ky and [7n], if the data in
low ¢ regions were approximated by straight lines, that
these errors tend to lead to greater values of Ky for
greater M. With our procedure, on the other hand,
Eq. (13) has worked well for variety of polymers,
including a polyelectrolyte solution with added salts.

We have earlier commented briefly on the effect of poly-
ions on the intrinsic viscosity of polyelectrolyte solution
when no salt is added to shield polyions’ electrostatic poten-
tial [36]. The increased concentration of the polymer will
increase the concentration of the polyions, which in turn will
increase (s*)'* to (sé)l/2 because of coulombic repulsion
among the polyions. Milas et al. [21] have reported that
the electrostatic interactions in ionic polysaccharides
increased the persistence length, which supports the above
argument.

There is another peculiar concentration effect in polyelec-
trolytes at very low polymer concentrations. The apparent
intrinsic viscosity will increase when the concentration is
decreased, i.e. ng/c is inversely proportional to the square
root of ¢, according to Fuoss’s empirical equation [37]. The
mechanism for this phenomenon was made clearer in the
form reworked by Stivala and coworkers [38] in which
the term c[7n] in Huggins’ equation was replaced with
[nl/c*. At very low polymer concentrations, the polyions
in neighboring molecules become further removed, while
the repulsive effect from those ions on the same molecule
remain unchanged. The net effect of the intramolecular
repulsive potential becomes more pronounced at these
extremely low concentrations. The chains become straigh-
ter, and <sp>3/2 further increases as concentration is
decreased beyond the already expanded state. The expan-
sion is inversely proportional to M>, but the number of
polyions is proportional to M, so it is ~¢ . Thus ¢[7] is
now modified to {c[*r)]}/cy2 = [*r)]/cl/2 in agreement with
Stivala’s formula.

In support for this hypothesis of ‘stiffening’ the
unshielded polyelectrolyte chains further at the very low
concentration, we cite the unpublished data [46] on the
rigid polyphenylenes with ionic substituent groups that
showed no Fuoss effect. This is because, in this case, the
chains were already fully extended, as the paraphenylene
conformers are co-linear, and their rotation does not affect
the conformation and the (s°)"’? remains constant.

Lastly on the effect of polyions on viscosity, we have not
discussed the lubricating effect that polyions might play
while the polyelectrolyte solution flows against a wall
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containing the polyions with similar electrostatic charge.
For example, red blood cells covered with polysaccharides
with negatively charged polyions apparently behave slip-
pery in flowing past each other [47]. The repulsive nature
between polyions with the same kind of charges will help
keep them separated from the wall, greatly reducing the
friction. This is perhaps the most important in vivo behavior
of biological polyelectrolytes that may not be observed in
vitro experiments and, unfortunately, could not be included
in the present analysis because we are unable to find
relevant data.

6. Equation of state

The thermodynamic state is described by the free energy
dependence on the intensive and extensive quantities. The
Gibbs free energy ¥ for the gaseous state is given by

Y=U+pV—TS (14)

where U is the internal energy, p the pressure, V the volume,
T the temperature, and S the entropy. In the ideal gas, where
intermolecular potential remains constant, pV is in balance
with 7S = RT, i.e.

pV =RT (15)

per mol.

In the solution, the solute molecules are distributed in the
space of solvent, undergoing Brownian motions. The osmo-
tic pressure m is the partial pressure resulting from the
kinetic motion of solute molecules on the semi-permeable
membrane. The molar volume is the space in which the
solute molecules are evenly distributed, so it is equal to
the inverse of the molar concentration, or 1/(c/M) = M/c,
with M the molecular weight of solute. The equation that
corresponds to Eq. (15) would be w(M/c) = RT or rearrang-
ing, van’t Hoff’s equation is obtained,
oL (16)
¢cRT M
For the polymer, it would be an ideal solution only if ¢; = ¢
at all concentrations. In general, c; # ¢*, and

T 1 c*
cRT M ¢

a7

The right side is expanded in a similar way that Eq. (13) was
arrived at

c - exp( ¢ ) (18)

Cr C_*
to obtain the polynomial with the limited number of terms
for the same reason,

2 3
T 1 1+i+i(£)+i(1) (19)
cRT M c* 21\ ¢* 31\ ¢*

This equation may be compared with the equation:

T 1 2 3

RT - M + Aye + Az + Ayc (20)
It is noted that the virial coefficients are dependent on the
molecular weight M, as ¢* ~ M~ for flexible chains. For
example, A, would be M %2 if a is assumed to be 0.8, as it is
common to solution in a good solvent [48].

When two states can exist at the same temperature, a
phase transition can occur. The most common phase transi-
tion is the fusion/crystallization at a temperature at which
U — TS is the same for the solid and liquid phases. For the
case such as described by Eq. (17), two states are possible at
the same concentration with different internal concentra-
tions. The latter can be realized by, for example, changing
the radius of gyration by changing the salt concentration for
polyelectrolyte solution, or by changing the molecular
weight of the polymer. There are many ways for phase
changes or pseudo-phase changes can occur without invok-
ing a change in internal energy. Some liquid crystals can
form even when there is no change in intermolecular poten-
tial during the formation, i.e. AU is nearly zero per Fraden
[44] in accordance with the theory of Onsager [45].

We did not choose the comprehensive ways of formulat-
ing the osmotic pressure that includes not only the entropy
but also the heat of dissolution, as illustrated by Billmeyer
[49] earlier and by Cassasa and Berry [50] in more recent
years. The use of Flory Huggins does not involve the inter-
nal concentration, which we feel is an important parameter
to connect the concentration-dependent (osmotic) pressure.
By our approach, we illustrated the purely entropic phase
transition through concentration change, and also the
polymer-specific virial coefficient that is related to the
entropy decrease by the increase in internal concentration.

7. Concluding remarks

The solution state has been described that depends on the
average internal concentration for the group of permanently
unevenly distributed particles or segments. The concentra-
tion dependence of the specific viscosity was introduced by
considering the dependence of the internal concentration on
the overall average concentration of the solution. From the
analysis the viscosity can be shown to be proportional to M
at low c[7] and rises finally to M or M* at high c[n] regions.
The concentration dependence of the critical molecular
weight that separates the two behaviors agrees with data,
but the ‘entanglement’ concept, often modeled intuitively
by the temporary cross-linked network by Green and
Tobolsky [51], or by the train of molecules pulled by a
molecule modeled by Bueche [11] seems unrelated to the
phenomenon analyzed here, particularly because the same
equation applies to rigid rod-like molecules. It seems to be,
rather, directly related to the concentration dependence of
the internal concentration for dynamic molecules.
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